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PCP Parallel coordinate plot 

CNN Convolutional neural networks 
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Summary 

Mineral prospectivity mapping is a vital tool for the exploration and mining industry. It enables geologists and 

mining companies to identify areas with the highest potential for new mineral deposits, which can guide their 

future exploration programs and investment decisions. This process involves collecting, compiling, and analysing 

various geochemical, geological, and geophysical data. Once the data is collected, different techniques, such as 

data pre-processing, data visualization, feature selection, and data augmentation, are used to identify patterns 

and relationships in data. Prospectivity modelling is then used to create a model that predicts the likelihood of 

finding new mineral deposits based on the collected data. The model's performance is evaluated using different 

cross-validation techniques. 

Additional algorithms cover data visualization, unsupervised learning, feature importance estimation, 

oversampling and uncertainty estimates. First two are about data exploration and useful in comparing various 

mineral prospectivity mapping projects to each other. The last three are about reducing costs of future mineral 

prospectivity mapping projects, adapting many existing algorithms to mineral prospectivity mapping task, and 

serving the decision making after analysis, respectively. Each algorithm serves as an example of its task category. 

Some future prospects like including a complete spatial cross-validation functions, are also presented. 

 

Keywords 

Mineral prospectivity mapping, Machine Learning, Data visualization, Multilayer perceptron, Cross-validation 
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1. Executive summary 

The additional algorithms developed for integration into the EIS Toolkit comprise of a set of typical general data 

analysis tools adopted to the mineral prospectivity mapping use case. Included are methods such as random 

forest, logistic regression, multilayer perceptron, convolutional neural network (CNN), uncertainty estimates, 

and over-sampling and sample balancing techniques. 

These are intended to convey a systematic formalization, which turns spatial information sources to conventional 

Machine Learning (ML) tasks. This way, two goals are accomplished:  

 Demonstration of the GIS integrability and validity of work cycles supported by GIS 

 Ability to convert a large-scale mineral prospectivity mapping problem to an ordinary ML problem with 

data formats subjectable to programs and ML experts outside the GIS community.  

Although some important aspects of this programme, e.g. spatial cross-validation, are not included, examples 

provided (in theory, in code, and with results) aid geo-information workers and geology-specialists to implement 

more methods in the same, in systematic manner. 

The existing ML methods, visualization techniques and summarization tools are already in a rather high standard 

in general ML community and within the project participants, but risks and uncertainties included in having only 

few mineral prospectivity mapping sites (positive samples in ML genre) have not been studied completely yet. 

Experiments done by UTU may open a scientific co-operation pipeline, where some important and scientifically 

established tools like Bayesian models and spatial cross-validation become available on GIS platforms. 

 

  



 

Exploration Information System 

Deliverable D 3.3: Final Version of Additional Algorithms - Documentation Report 

9 

 
Funded by 
the European Union 

2. Introduction 

2.1. Objective of task 3.2 

The main goal of Task 3.2 is to develop efficient machine learning methods for mineral prospectivity workflow. 

For this purpose, we divided this task into the following sub-tasks: 

 Data pre-processing: Methods for spatial feature extraction from spatial data. We tried to find self-

explanatory features as well as more abstract feature spaces. 

 Data visualization algorithms: Several clustering methods were tested to produce visualizations of 

mineral prospectivity and a limited set of auxiliary properties, which are of interest to geologists.  

 Prospectivity modelling: Several methods were tested starting from simple and robust ones like random 

forest and ending to deep learning methods. Special interest are validation methods considering the 

spatial autocorrelation of data. The order of experimentation is such that it guarantees a satisfying 

performance within the given resources.  

 Algorithms for estimating the uncertainty of prediction: Computationally simple methods e.g., k-nearest 

neighbours were used to estimate the uncertainty of the models. Advanced data variation approaches 

were used, too. 

 Optimization of training data: Such methods are sought after, which determine new field sample site 

candidates, which improve the uncertainty or spatial generalization capability of the prospectivity 

models. 

 

2.2. State of the art 

Predictive modelling of mineral prospectivity mapping (MPM) using geographical information systems helps to 

create maps of mineral potential by incorporating geospatial data from multiple sources. The workflow of GIS-

based MPM comprises the spatial correlations between geological, geochemical, and geophysical with known 

mineral deposits. MPM is a data-driven procedure, which highly depends on geoscientific data and statistical 

correlations between geospatial patterns and known annotated mineral points. 

There have been many reviews of work on mineral identification for specific dataset types. Since 1980, logistic 

regression (Chung and Agterberg, 1980a, b) and WofE (Agterberg, 1989a, b) have been used in MPM. Bonham-

Carter (1994) explained the working idea of these principles in his work. The WofE model introduced by 

Agterberg and Bonham-Carter (1990) into the field of mapping mineral prospectivity (Agterberg, 1989a, b; 

Agterberg and Bonham-Carter, 1990; Bonham-Carter, 1994), is popular among these techniques because it is 

simple to apply and interpret (Porwal and Carranza, 2015). WofE is a probabilistic model that uses conditional 

probability theory to figure out how geospatial patterns and known mineral deposits are related to each other 

in the spatial domain. Carranza and Hale investigated how fuzzy logic and logistic regression could be used to 

map gold mineralization potential in the Philippines' Baguio district (Carranza, E.J.M., and Hale, M. 2001). Their 

method demonstrated how fuzzy logic could increase the precision of MPM predictions by accounting for 

uncertainty in the input data. Based on the Dempster-Shafer theory, Evidential belief functions manage 

uncertainty and incorporate various evidence from geological, geophysical, and geochemical data in mineral 

prospectivity mapping (Carranza, 2008). 
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Machine learning is getting a lot of attention in mineral prospectivity mapping because it can handle large and 

complex datasets, improve the accuracy of predictions, and automate the process of finding out latest 

information (Carranza, 2011). Since 1990, simulating the human brain's learning process by adjusting weights 

between interconnected neurons, ANN has been applied in the field of MPM (Cracknell & Reading, 2014). In 

mineral exploration, ANNs have been shown to be able to model complex, nonlinear relationships between 

geological, geophysical, and geochemical variables (Singer & Kouda, 1996). However, ANNs have some problems, 

like the difficulty of estimating the optimal network parameter, the risk of overfitting, and the fact that the 

learned models are hard to understand (Cracknell & Reading, 2014). SVMs, a class of ML techniques, have been 

used for MPM due to their ability to manage high-dimensional data and their robustness towards overfitting (Zuo 

et al., 2017). The main objective of SVM is to find the optimal decision boundary (hyperplane) that can separate 

the positive (mineralized) and negative (non-mineralized) samples with the maximum margin (Granek, J. 2016). 

However, with large datasets, the kernel function and hyperparameters selected may impact the model's 

performance (Zuo et al., 2017). Random forest is a type of ensemble learning that can process high-dimensional 

data, resist overfitting, and give variable importance measures (Rodriguez-Galiano et al., 2015). RF combines 

numerous decision trees to create predictions, each of which was built using a different random subset of the 

training data and variables (Breiman, 2001). Another ensemble method, Gradient Boosting Machine (GBM), has 

demonstrated promise in MPM by successively integrating many weak learners (often decision trees), with each 

new learner rectifying the mistakes of the prior one (Oliveira et al., 2019). With better performance than other 

ML techniques, GBMs have been successfully used to map out the gold reserves in Brazil. 

Deep Learning is a state of art technique that has emerged as a promising approach in MPM due to its capability 

to model complex relationships between input features and target variables (Chen et al., 2020). CNNs have 

gained a lot of attention in MPM because they can handle spatial data like remote sensing and geophysical 

images well and learn hierarchical features on their own. The authors showed that CNNs are better than 

traditional machine learning methods at handling multi-scale spatial data and making accurate predictions. 

Autoencoders are a type of unsupervised DL technique used in MPM to find features and reduce the number of 

dimensions (Luo, 2020). Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU), a Recurrent Neural 

Network (RNN) type, has shown potential for MPM due to its ability to model ordinal dependencies in time-series 

data (Zhao, 2020) (Yin, 2022). 

 

2.3 Novel ML methods in mineral prospectivity mapping 

All the implemented methods listed in chapter 3 of this deliverable are established in other fields of general data 

analysis and machine learning. Some of them might be novel in respect to mineral prospectivity mapping, but 

actual new algorithms did not make to this delivery. What has been unique in this work, is the collection and re-

developed under one template and goal – to be implemented into the EIS Toolkit. 

Since this deliverable represents the results of the initial – beta release – development, we expect the following 

algorithms to be developed, validated and scientifically published and to be available by April 2024 with the final 

release within the EIS Toolkit: 

 Extension of synthetic minority oversampling (SMOTE), (Chawla et.al. 2002) which extends the 

collinearity assumption to affine subspace spanned by a subset of positives.  

 Contrastive learning applied to mineral prospectivity mapping (Jiang et.al. 2021). This will be an 

experiment starting on May-June 2024. 
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2.3. Mineral prospectivity mapping workflow and provided ML 

functions 

The following table is provides an overview of typical stages in a mineral mineral prospectivity mapping process 

versus the potential support they can get from various ML functions implemented in EIS in the frame of Task 3.2 

by UTU. 

The table is a subjective, temporary view of the additional ML algorithms team and can change later, when EIS is 

being applied routinely in daily work. Also any new ML and/or GUI functionality may change behaviour of users 

and become a focal point linking tasks and functions differently. 

We have roughly approximated the geological aspect to the following tasks: 

 desk study (maintaining general awareness of various potential projects), 

 proxy selection (evaluating new data channels and their potential to substitute old ones), 

 feature mapping (somewhat vague stage for geologically uninitiated person, but it quite likely involves 

EIS), 

 result evaluation (a stage where one reasonably needs everything the ML data visualization genre can 

offer), and 

 resource estimation (quite likely both addressing similarities between known sites and potential sites). 

 

The listed ML functions in the columns of the table are the same as accounted in chapter 3. 
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Table 1: Overview of developed additional algorithms and their fields of application. 

Tool 

Principal 

Component 

Analysis 

(PCA) 

Parallel 

coordinates 
Scatterplot 

Self-

Organizing 

Maps 

(SOM) 

RF 
Logistic 

Regression 

Artificial 

Neural 

Network 

(MLP) 

Convolutio

nal Neural 

Network 

(CNN) 

Feature 

Importance 
SMOTE 

Auto 

Encoder 

Uncertainty 

Measure 

Cross 

Validation 

(SCV) 

Desk study   X X        X  

Proxy 

selection 
X X X X     X    X 

Feature 

mapping 
    X X X X   X  X 

Result 

evaluation 
X X X X X    X X X X X 

Resource 

estimation 
      X X   X X X 
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3. Software documentation 

3.1. Data pre-processing 

The main task of pre-processing was to convert the multiple geophysical attribute GeoTiff raster layers into a csv 

table, where one row corresponds to the location of one pixel in the datasets and columns correspond to values 

of one geophysical attribute. This was only done for the visualizations and analysis that required it, otherwise 

the GeoTiffs would be used. This conversion should be eliminated from the final version of the software, and 

everything should use just the GeoTiffs directly. Some additional columns are added, such as the coordinates of 

each pixel and whether a known ore deposit is located there. The raster sampling can be done easily with 

conventional GIS software, such as QGIS, or using rasterio and geopandas python packages. In this case, GIS 

software was used. In QGIS, the workflow is like the following:  

"Raster pixels to points"—the tool can be used to convert pixels of one raster layer to a points layer, with each 

pixel having the value of the raster layer in its attribute table. Other layers values can be added to this layer as 

new columns using the "sample raster values" tool. The "Rasterize (vector to raster)" tool can be used to create 

a raster with a value for known ore deposit locations and zero elsewhere. This can then be sampled the same 

way as all the other raster layers. Finally, the north and east coordinates (in the projection of the data) can be 

added as fields in the field calculator with the $x and $y commands, respectively. Then, the resulting vector point 

layer can be saved as a csv. The resulting csv format allows using any generic ML software and environment for 

rapid experimentation and development of new algorithms, when a need arises. 

 

3.2. Data visualization 

3.2.1 Principal component analysis 

Principal component analysis (PCA) is a statistical method that uses dimensionality reduction techniques that 

may give the geologist or mineral prospectivity mapping expert a unified view over data or parts of it. It is possible 

to detect clusters from this view, which the user then can try to explain, and direct further analysis steps 

accordingly.  

This unsupervised algorithm is often used in ML to find solid patterns while emphasizing the variation in the 

dataset. The fundamental concept behind PCA is to find dominant directions in the dataset that contain the 

highest variance. The orientation of the dominant plane is such that clustering structure is sometimes revealed 

(Abdi & Williams, 2010). The dominant plane is defined by so called principal components (1,2 or 3) of the data. 

Subsequent principal components account for a decreasing amount of capability to explain the variance in data 

(Jolliffe & Cadima, 2016). 

The PCA is a well-known and common method with many variants, and often used with multi-source 

geolocational data as a preliminary tool. There are formulations such as the iterative power method, the 

covariance matrix eigen decomposition, or singular value decomposition (SVD). The covariance matrix of the 

given data is calculated, and eigenvectors (principal components) and eigenvalues are found. The eigenvalues 

give the variance in each principal component, while eigenvectors show the direction of the new coordinate 

system (Wold, Esbensen, & Geladi, 1987). After the calculation of principal components, the calculated data is 

projected onto the new coordinate system for visualization, classification, or regression tasks (Van Der Maaten, 

Postma, & Van den Herik, 2009).  
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Typically, the PCA is a one standard routine done to any ML problem with normalized data. The PCA view is 

considered in the ML genre just a visualization of its dominant hyperplane (2 or 3 dimensional). This view 

characterizes the data: a tight ball with initial eigenvalues similar to each other tells there are no clear 

explainability inherent in the data, whereas dominant initial eigenvalues indicate a linear subspace and possibly 

small intrinsic dimensionality. In that respect, it is customary to compare PCA’s of totally different problems to 

acquire understanding of the problem difficulty and of the methods required.  

There are many options for visualizing PCA. With geospatial raster data, one of the most effective ways is to set 

different principal components to red, green, and blue bands of a raster (Figure 1). This way, areas of bedrock 

with comparable properties are highlighted with similar colours. Sometimes it might also be useful to assign 

principal component 4, 5 or even 6 into one of the colour bands. However, this is only useful if these components 

have eigenvalues that are not much smaller than principal components 1, 2 and 3. 

Figure 3 shows ten different raster layers were used as starting data, each of them containing information about 

radioactivity, electrical properties, or magnetic and gravitational anomalies in the area. PCA was done for the 

layers, and the first principal component was assigned to red band, second principal component to green band 

and third component to blue band. The resulting raster is very colourful since the principal components do not 

correlate with each other. Known ore deposits are shown with white rings. It is notable that all of them in the 

area are located at or close to similar hues of dark red and violet. 

 

 

Figure 1: Example of PCA visualization with geophysical data. 
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3.2.2 Parallel coordinate plot 

A parallel coordinate plot (PCP) is a well-known, powerful visualization tool for analysing and exploring high-

dimensional datasets in two-dimensional space. PCP is also known as parallel axes plot or parallel coordinates. 

PCP represents each row in the data table as a line or profile, with a point on the line representing each row's 

attribute. Alfred Inselberg first introduced PCP in the 1980s, and it has since become widely used in various fields 

of machine learning (Inselberg, A., 1985). In some cases, a cluster structure in data can be observed, especially 

when a certain value of a certain feature dominates a cluster. (Sansen, J., Richer, G., Jourde, T., Lalanne, F., Auber, 

D., & Bourqui, 2017).  

PCP is particularly good in our case because it gives the analyst a compact and straightforward way to explore the 

data. Secondly, it gives an intuitive overall view of the data (Inselberg, A., & Dimsdale, B., 1990, Figure 2). 

 

 

Figure 2: Example of parallel coordinate plot with geophysical data. 

 

In Figure 4, the value of known ore deposits is shown in red, while values from other places are shown in shades 

of grey with darker areas showing higher densities than lighter areas. 
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3.2.3 Heatmap 

Heatmaps are a type of plot that visualizes the strength of relationships between numerical variables. Correlation 

plots can be used to understand which variables are related to each other and the strength of this relationship 

(Figure 3). 

 

Figure 3: Pairwise correlations between different geophysical variables. 

 

The radioactivity measures are strongly correlated with each other in the test data, but otherwise the variables 

are mostly not strongly correlated. 

 

3.2.4 Scatter plots 

A scatterplot is useful tool for understanding the pairwise relationship between different variables in a dataset. 

They are particularly effective when they are interactively combined with other data visualization tools. 

 

Example with geophysical data 

For this example, the PCA visualization introduced previously is used as a starting point. A sub-region of the data 

with similar colours to the known ore deposits is also demarcated (Figure 4). 
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Figure 4: An example sub-region (pink) that is similar colour to the known ore deposits (white 

rings) has been digitized, and its values from bands 1 and 2 have been plotted on 

Figure 5 along with the values of all the data. The data is PCA from multiple 

geophysical data sources, where principal component (PC) 1 is assigned to red, PC 2 

to green and PC 3 to blue. 

 

Principal components 1 and 2 were chosen for the scatterplot (Figure 5). The sub-region was plotted with a 

distinct colour than the rest of the data. Raster files often have millions of pixels, and it is thus important to show 

point density with colour in the densest parts of the scatterplot. 
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Figure 5: Scatterplot of principal components 1 (horizontal) & 2 (vertical). The colours indicate 

the sample density (white: dense, pink: sparse). 

 

The sub-region shown in Figure 5 is shown in pink. The red box shows the approximate value range of the sub-

region. All the other values are shown in shades of blue. Lighter regions correspond to higher density.  

Finally, the locations with values within the demarcated region in the scatterplot can be added back to the map 

(Figure 6). These are areas with similar geophysical features, and ore deposit locations since they are like known 

ore deposits. The areas of interest could be narrowed further by looking at different band combinations in the 

scatterplot. 
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Figure 6: Locations of pixels with values of principal components 1 and 2 in the value range 

demarcated in Figure 7. 

 

3.2.5 Self-organizing maps (SOM) 

Self-organizing maps are a type of neural network that were invented in the 1980’s (Kohonen 1980). SOM can be 

used to compress multiple layers of data into a simpler feature space, which is useful for finding groups in the 

data and visualizing patterns. It works by initializing a grid of values with either random or PCA-initialized values. 

Then for all the data the best matching unit (BMU) is found, and the values of that cell and ones close to it are 

moved towards the presented data point. SOM results can be concisely represented in a U-matrix, where the 

value describes each cell’s "feature distance" from the neighbouring cells (Figure 7A). Additionally, SOM can also 

be looked at per variable basis. These can then be changed to geographical maps by finding the BMU for all the 

pixels of a Geospatial raster (Figure 7B and Figure 7C). SOM has shown promise with exploration of Geological 

datasets (Torppa et. al. 2021). The SOM can also be k-means clustered (Figure 8). 
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Figure 7: SOM with U-matrix representation. Known mineral occurrences are shown with 

black circles. A) The raw SOM U-matrix representation. Please note that the topology 

is toroidal, which means that top and bottom rows are next to each other as well as 

leftmost and rightmost columns. B and C) Geospatial U-matrix. 
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Figure 8: K-means clustered SOM. 

 

3.2.6 Mahalanobis similarity 

Mahalanobis similarity is standard deviation extended to multiple variables. Main idea is to measure similarity 

of all locations in a given geospatial raster to a (small) group of known mineral occurrences (Figure 9). The 

similarity is measured compared to the averaged features of the mineral occurrences, meaning that even the 

known mineral occurrences do not get full similarity. 

However, there are multiple reasons for why Mahalanobis may have limited usefulness with geological data. 

Mahalanobis requires multivariate normal distribution, which is rare in geological data. Mahalanobis may thus 

require several transformations of data or simply not be possible. Only important and relevant geophysical 

measurements should be included in the analysis, which requires previous feature importance analysis.  



 

Exploration Information System 

Deliverable D 3.3: Final Version of Additional Algorithms - Documentation Report 

22 

 
Funded by 
the European Union 

 

Figure 9: Mahalanobis distance and p-values. 

 

3.2.7 Spatial cross-validation 

Spatial cross-validation (SCV) comes in several different varieties, since the topic has been discovered and 

addressed over several independent studies during the years 2011-2023. SCV can be divided to three approaches, 

each one increasingly more pessimistic when compared to standard, non-spatial CV (number 1): 

1. Normal CV: data is divided to test and non-test parts. The latter is divided to pairs of teaching and 

validation. Each teaching data set helps to optimize method parameters, and the performance is tested 

by validation part. The validation part is used to optimize the hyperparameters.  Finally, the test set 

records the estimated performance, when facing new data. The notable thing is that data is divided to 

various sets at random, independent of spatial location. A synthetical example of sample locations 

divided to train and validation (could be test and non-test division as well) is depicted in Fig. 1 (a). The 

procedure is finished by the final teaching with whole data to achieve the production predictor, estimate 

of performance was produced by previous arrangement.  

2. Zonewise CV (ZCV): just like normal CV, except each set is allotted a solid zone, and zone borders are 

relatively simple (not zig-zagging), see Figure 10b. This gives some sense top the final estimation of the 

performance, since spatial auto-correlation (SAC) has a minimal effect (only some sample pairs chosen 

from training and test sets are geometrically close). (Deville et.al. 2014) and (Towards 2024). Since this 

approach omits a lot of SAC effects, it tends to create a more pessimistic estimate of the prediction 

performance when facing similar data channels in a completely new location.  
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3. ZCV with a spatial margin (ZCVm): just like the plain ZCV, but a margin of width r is added in between 

different subsets (Beigaite et.al. 2022). The margin makes it more clear how semivariogram subjected 

to the prediction error would behave over the range r, and is more pessimistic than the version 2. See 

Figure 10c. 

4. Normal CV with a spatial margin (SCV): Just like normal CV (with its usual versions of normal CV and 

leave-one-out (LOO) ) but this time each training sample, which is too close from any validation or test 

sample, is excluded. (Ploton et.al. 2020, Airola et.al. 2019] See Figure 10d. This drastically reduces the 

training set when r is large, but for practical r values it gives much more stable models over each training 

set, and estimates prediction semivariogram accurately over much longer ranges. It is able to judge, 

whether a spatial generalization occurs and if so, how far it reaches. It is also able to predict a degree of 

spatial invariance, that means, whether a model is valid “everywhere” or not. 

 

 

Figure 10: (a): Spatial data divided to two sets: teaching (green) and validation (red). (b): 

Training and validation sets divided to different zones. (c): Margin added to (b). (d): 

Margin used to (a) to eliminate too close points from the training set (green). 

 

Figure 11a has semivariograms of a prediction over the range r. The definition of semivariance concerns only one 

variable v, mean of (v(p) – v(q))^2  of which is taken over all locations p,q having a distance r ≈  ||p-q||. In this 

case we digress from this and subject the semivariogram over the prediction errors 𝑓 − 𝑓. Typically the SCV 

semivariogram of error grows fast until it reaches approximately the level of prediction to mean, at which range 

the model is practically useless. SCV is more pessimistic (error above ordinary CV error expressed as 

semivariogram), and normal CV shows total ignorance to the distance of the prediction. 

  



 

Exploration Information System 

Deliverable D 3.3: Final Version of Additional Algorithms - Documentation Report 

24 

 
Funded by 
the European Union 

 

 

Figure 11: (a) Semivariance of a prediction error (red dashed) by normal CV stays low and 

independent of distance. The prediction to mean (yellow) gives mean square error 

(SQE) measured as semivariogram. Spatial CD (black solid) predicts much higher 

error, which stabilizes to the prediction of mean at the end of the zone of spatial 

generalization. (b) Classification performance of four models: spatially independent 

model (black), a typical problem (blue) with a model without spatial generalization 

capability, signs of spatial generalization (green), highly localized problem (red). 

Detail (a) is a recreation of a similar presentation in (Ploton et.al. 2020). 

 

Figure 11b shows 3 different classification problems, and their classification performance behaviour over range 

r. There is a category of spatially invariant problems (e.g. annual temperature at the mountain top predicted by 

the mountain height is surprisingly stable over large latitude range). The most common problem type (blue) 

becomes gradually more difficult over the range to nearest labelled data, and the last problem (red) shows high 

spatial correlation, and should be approached by Kriging -like methods, and this only nearby any labeled samples. 

The green curve is a result of applying an expressive enough model successfully to a problem (blue) achieving 

spatial generalization.  Detail (b) examplifies results in (Airola et.al. 2019), where the measure (performance axis) 

used was an area-under-curve AUC of a binary classifier. 

 

3.3. Mineral prospectivity modelling 

3.3.1 Random forest 

Random forest (RF) algorithm is a decision tree-based method, which works by testing multi-branched decision 

trees for the input data set and selecting the decision tree that results in the best prediction. Each node in the 

decision tree represents testing an input feature, and each branch end represents the result of the test (Breiman 

2001). The decision trees allow modelling complex interactions in the feature space formed by the input data, 

and thus they often work well in high-dimensional feature space. Individual decision trees are often prone to 

overfitting, which can be kept under control by using multiple decision trees (Stephens 2017). RF typically 

requires enough observations in the training data. RF is a common method in remote sensing-based applications 

where a high number of input features are used. 
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3.3.2 Logistic regression 

Logistic Regression (LR) is a widely used statistical model that is mostly employed for binary classification tasks 

(Hosmer Jr et al., 2013). It is well-known for its simplicity, interpretability, and its capability to generate 

probabilistic predictions (Agresti, 2002). The LR model is based on a robust mathematical framework, which 

models the logarithm of the chances of event probabilities (McCullagh and Nelder, 1989). This model is optimized 

using the Maximum Likelihood Estimation (MLE) technique, which guarantees that the predictions align with the 

observed data. The adaptability of this technology is seen in its wide-ranging applications across various sectors, 

including medical diagnostics, marketing analytics, and financial risk assessment. The ongoing relevance and 

utility of linear regression (LR) in predictive analytics are underscored by its capacity to offer valuable insights 

through the interpretation of coefficients and its adaptability in various scenarios, including those involving 

sparse data environments. These strengths persist despite LR's linear nature and the assumption of a linear 

relationship between features and log-odds. The enhanced interpretability of the model, resulting from its 

capability to generate probabilities, facilitates nuanced decision-making across many applications (Bishop et al., 

2006). Consequently, it has become a vital tool within the domain of statistical and machine learning algorithms. 

 

3.3.3 Multilayer perceptron 

Multilayer perceptron (MLP) (Bishop, 1995) is a simple feedforward neural network that is composed of multiple 

layers of perceptron. MLP typically consists of at least three layers of nodes: an input layer, a hidden layer, and 

an output layer. In the prediction task, MLP neural network typically trains the neural network to minimize the 

difference between output and objective by adjusting the weights of the inputs within the layers. MLP, or neural 

networks in general, are usually trained using some form gradient descent-based backpropagation algorithms 

which calculate the network’s current performance with the data and then updates the network weights layer 

by layer by moving backwards (i.e., back-propagating) through the network. Because the number of weights in a 

neural network are usually exceptionally large, it becomes easily computationally infeasible to perform the 

iterative updates of the network using the full data available. In these cases, especially in deep neural network 

context, a stochastic versions of backpropagation algorithms are used which take a random smaller sample of 

the training data and perform the weight updates using this sample. The training of MLP is easy task, but in 

remote sensing-based applications MLP has been superseded by other machine learning methods such as genetic 

algorithms and support vector machines due to their better empirical performance in empirical prediction and 

classification tasks (see e.g., Frias-Martinez et al., 2005, Pohjankukka et al., 2018). 

 

3.3.4 Multilayer perceptron probabilistic model  

This study deploys a Multilayer Perceptron (MLP) neural network to conduct mineral prospectivity mapping. The 

dataset used in this task is pre-processed with the Synthetic Minority Over-sampling Technique (SMOTE), which 

ensures that class imbalance issues are handled effectively (Bishop, 1995) (Chawla et al., 2002). The aim of this 

study is to predict the probability of mineral occurrence in different geographic areas, focusing on a binary 

classification approach. The Multilayer Perceptron (MLP) is a neural network architecture with interconnected 

layers: the input, hidden, and output. Its purpose is to effectively capture intricate relationships within the data, 

facilitating accurate mineral prospectivity predictions. Following the training phase applying SMOTE-enhanced 

data, the model was subsequently evaluated on mineral class occurrences that were previously unknown mineral 

class instances. The model computed the probability of each mineral class being present during this evaluation. 

The probabilities obtained from the last layer of the Multilayer Perceptron (MLP) were utilized to perform a 

binary classification of each geographic point. Based on the predetermined threshold criteria, these probabilities 

facilitated the binary type of each geographical point into two categories: mineral-rich or not mineral-rich. 
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Subsequently, points categorized as containing minerals are extracted and carefully mapped on a geographical 

map based on their precise geographic coordinates, which provides a visual representation of the regions with a 

higher likelihood of mineral presence. Integrating SMOTE pre-processing, MLP modelling, and geographical 

visualization offers a robust methodology for identifying possible mineral-rich areas, which helps mineral 

exploration professionals make better strategic decisions. 

 

 

Figure 12: Prediction of minerals with probability threshold (>=) 50%. 

 

 

Figure 13: Prediction of minerals with probability threshold (>=) 95%. 

 

Figure 14: Prediction of minerals with probability threshold (>=) 99.998%. 

 



 

Exploration Information System 

Deliverable D 3.3: Final Version of Additional Algorithms - Documentation Report 

27 

 
Funded by 
the European Union 

Figures 12-14 illustrate the spatial visualization of probabilistic model estimation achieved through the Multilayer 

Perceptron (MLP) classifier. The MLP model, trained on the SMOTE data, predicts the probability of mineral 

occurrence across the given geographical areas. By applying specific threshold criteria, the geographical points 

in Figures 12-14 are classified into either mineral deposits or non-deposits.  These thresholds correspond to 

confidence levels of 50%, 95% and 99.998%, respectively. 

 

3.3.5 Convolutional neural network (CNN) classifier 

In the last few years, Deep Learning (DL) has made huge progress in remote sensing (Lei et al. 2019). The most 

common DL applications in remote sensing include image fusion, scene classification, object detection, land-

cover classification, and semantic segmentation. However, for remote sensing, several challenges from difficult 

data acquisition and annotation have not been fully solved yet. Convolutional neural network (CNN) is a most 

extensively used DL models that can process data in the form of multiple layers (Yao et al. 2019). For this reason, 

CNN is applicable for processing multi-band remote sensing data. A CNN model consists of different layers of 

convolution, Rectified Linear Unit (RELU), pooling and fully connected (Dhillon et al. 2020). The Convolutional 

layer learns feature in an input data. The RELU layer introduces non-linearity through activation function. The 

pooling layer reduces dimensionality and preserves spatial invariance. All these layers are responsible for feature 

extraction and then the fully connected layer perform classification. 

 

3.3.6 CNN segmentation with uncertainty estimate 

Semantic segmentation with a CNN means classifying images pixel-wise. U-net has become successful and 

popular segmentator in many fields. However, training it requires large datasets that may be labour-intensive or 

simply unrealistic to create. This is especially true in Geology, where usually only a handful of occurrences are 

known. Thus, several measures are implemented to minimize the need of training data. First of all, the used 

images are small, only 32 x 32 pixels. Secondly, instead of full U-net only the mid-section of the model is used. 

Thirdly, the point features are exaggerated in size because larger objects are easier to recognize for CNNs. 

Fourthly, the areas with known locations are oversampled (Figure 15). The known occurrences are oversampled 

and negative samples are selected randomly. This ensures that both sample types are represented equally in the 

created dataset. The sampler works well with sparse datasets, where it is relatively rare that the negative samples 

would contain an unknown occurrence. Even after all these methods, overfitting remains a problem. 
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Figure 15: Example of samples created for CNN. 

 

Main idea of uncertainty estimation: the model learns to predict its own uncertainties alongside the actual 

prediction (DeVries & Taylor, 2018) (Figure 15). When overall certainty is high (close to 1) the model is evaluated 

as if no certainty estimate was used. When certainty is close to zero at certain pixel, the model prediction does 

not matter at all for the loss at that pixel, encouraging accurate uncertainty estimate. To prevent model 

predicting high uncertainty everywhere, it is punished for being uncertain at large areas. 

Cons: The model hyperparameters need to be fine-tuned precisely. Even after all the data scarcity mitigation, 

overfitting remains a problem. However, the uncertainty estimate may reveal potential new areas even when 

the model has started to overfit (Figure 16). 
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Figure 16: Example of model prediction and uncertainty estimate. 

 

3.3.7 Permutation feature importance 

Permutation feature importance is a model-agnostic method for figuring out each feature's importance in a 

machine learning model. It does this by measuring how the model's performance changes when the values of a 

particular feature are changed randomly (Breiman, 2001). The basic idea is that if a feature is vital for making 

predictions, changing its value at random should significantly affect how well the model works. It is model 

agnostic, allowing it to be applied to any supervised learning model, and it does not rely on assumptions about 

the data distribution or the model's structure (Fisher et al., 2019). However, it can be computationally expensive, 

especially for high-dimensional datasets, because it requires evaluating the performance of the model more than 

once. Also, it might not give an accurate estimate of how important correlated features are since rearranging 

one feature might not significantly affect how well the model works if another correlated feature still gives similar 

information (Strobl et al., 2008). Despite these shortcomings, permutation feature importance is still a 

fashionable way to figure out how important a feature is in different situations. It helps researchers and 

practitioners understand their models, determine their meaning, and make their models work better by choosing 

crucial features. 
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Figure 17: Permutation Feature Importance with Logistic Regression. 

 

Figure 17 demonstrates the results of applying permutation feature importance to a logistic regression model. 
This study helps in the understanding of the features that have the most significant impact on the performance 
of the model.  

 

Figure 18: Permutation Feature Importance with Multilayer Perceptron. 
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The study is further expanded to encompass a more intricate model known as multilayer perceptron (MLP) as 
shown in Figure 18. Permutation feature importance applied to the MLP model illustrated how different features 
contribute to its predictive power. 

The application of permutation feature importance enables user to make decisions on the selection of features, 
hence improving the interpretability of models and optimizing their performance. 

 

3.3.8 Weighting of class 

Weighting of class is a machine learning technique to address imbalanced datasets, where some classes have 

significantly fewer instances than others. Imbalanced datasets can lead to biased models that perform poorly on 

the underrepresented classes, as the learning algorithm tends to focus on the majority class to minimize the 

overall loss (He & Garcia, 2009). By assigning different weights to each class, the learning algorithm can be guided 

to pay more attention to underrepresented classes during training. Most of the time, larger weights are assigned 

to the minority classes, whereas lower weights are assigned to the majority classes. This way, misclassifying an 

instance from the minority class will significantly impact the loss function, encouraging the model to improve its 

predictions for the underrepresented classes. Many machine learning libraries, like Python's scikit-learn, have 

built-in features that automatically calculate class weights or let users set their own (Pedregosa et al., 2011). 

Adding class weights to the learning algorithm makes the model more likely to do better in the minority classes. 

This class weight makes the classifier more balanced and reliable. 

 

3.3.9 Synthetic minority over-sampling techniques (SMOTE) 

Synthetic Minority Over-sampling Technique (SMOTE) is a popular technique used to address the class imbalance 

problem in machine learning datasets (Chawla et al., 2002). The issue of class imbalance occurs when certain 

classes have a significantly smaller number of instances than others, which results in biased models that 

underperform for the underrepresented classes. The problem of class imbalance occurs when some classes have 

much smaller datasets than others, resulting in biased models. SMOTE works by generating synthetic samples 

for the minority class, effectively balancing the class distribution, and improving the model's performance on the 

minority class. In this way, SMOTE generates synthetic instances, providing a more balanced dataset without 

duplicating any already existing instances. This allows the learning algorithm to capture the decision boundary 

between the classes better and achieve improved performance on the minority class. 

Despite its advantages, SMOTE also has some limitations. It can lead to overfitting, particularly when the 

minority-class instances are noisy or near the decision boundary. Moreover, SMOTE does not consider the 

majority class distribution, which may result in synthetic instances being generated in regions where majority 

class instances dominate. To address these issues, several SMOTE variants have been proposed, such as 

Borderline-SMOTE (Han et al., 2005) and Adaptive Synthetic (ADASYN) sampling (He et al., 2008), which focus on 

generating synthetic instances in more challenging regions of the feature space. 
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Figure 19: Original Dataset Distribution. 

 

Figure 20: Dataset Distribution after applying SMOTE. 

 

Figure 19 illustrates the distribution of the original dataset, highlighting the presence of class imbalance concerns 

wherein certain classes exhibit a notable scarcity of instances. On the other hand, Figure 20 illustrates the dataset 
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distribution following the implementation of the Synthetic Minority Over-sampling Technique (SMOTE). SMOTE 

decreases challenges related to class imbalance and it improves the model's capacity to manage instances from 

the minority class successfully. 

 

3.3.10 Autoencoder 

Autoencoders can be used to gain useful information about the data; this is achieved by training an encoder-

decoder network that reconstructs the input image. After training, by inspecting the bottleneck layer between 

the encoder and decoder, the data’s dimensionality is reduced to the most prominent features, as the features 

have thus been squeezed into a minimized number of computing units. The code allows for different autoencoder 

configurations, where the user can give the desired number of layers and convolutional filters, which will then 

build a symmetrical encoder-decoder structure. The used loss metric was mean squared error, along with 

Structural similarity index for evaluation. 

This bottleneck can then be used for varying applications, including: 

1) training other models via transfer-learning, 

2) non-linear dimensionality reduction, as opposed to linear dimensionality reduction like PCA, 

3) Visualizing the features of the bottleneck, which can be done with tools such as t-SNE in 2D or 3D (as 

shown in Figure 21), 

4) Feature extraction by using the bottleneck layer as an input to other models, such as a CNN or as a part 

of a loss function, such as Perceptual loss (Johnson et al., 2016), 

5) Anomaly detection, either with training the model on normal data and then predicting it on new data, 

as anomalies would have high reconstruction loss, or by inspecting the feature difference and clusters 

with tools such as t-SNE 

6) Denoising the data, which might have its uses with imperfect satellite images, 

7) Generative modelling, both with the before-mentioned Perceptual loss function and with Variational 

autoencoders, 

8) prediction tasks, such as predicting the band A given input data of bands B and C. 



 

Exploration Information System 

Deliverable D 3.3: Final Version of Additional Algorithms - Documentation Report 

34 

 
Funded by 
the European Union 

 

Figure 21: Example of 3D t-SNE on geophysical data. 

 

Included is also an autoencoder builder function with skip-connections and attention blocks. Skip-connections 

are used in U-Net segmentation models to bypass layers and connect to layers not immediately next or before 

the current layer, which have been noticed to aid in segmentation tasks to keep small and general feature 

relationships correlated. Attention is a method to focus on features, that have the strongest effect on the model 

performance or affect the current segmentation etc. task the most. 

 

 

Figure 22: Example of reconstruction of AEM band of geophysical data. 
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3.3.11 Uncertainty estimation using Bayesian neural network 

In traditional deep neural networks (DNN), the trained weights of a DNN are a point estimate for each parameter, 

thereby producing deterministic network outputs for a given input. On the other hand, Bayesian neural networks 

(BNN) establish a probabilistic distribution over the weight parameters. The process of estimating the posterior 

weight distribution enables Bayesian neural networks (BNNs) to capture and quantify uncertainty in their 

predictions effectively (Olivier et al.,2021). Measuring uncertainty can help identify when a test input's 

predictions are noisy because it deviates from the training distribution or because the model cannot account for 

unknown causes. The point predictions generated by Deep Neural Networks (DNNs) do not provide information 

regarding the inherent features of the input. 

The total uncertainty in the prediction, referred to as the predictive uncertainty, is comprised of both epistemic 

and aleatoric uncertainty (Joachims, 2021). Epistemic uncertainty refers to uncertainty within the model 

parameters. It is reducible uncertainty, which means that it can be reduced by collecting more data or improving 

the model. This can be viewed as the posterior weight distribution, in which a peaked posterior distribution 

reflects lower epistemic uncertainty, while a broader posterior distribution shows higher epistemic uncertainty. 

For the given input point and fixed weight parameters, higher aleatoric uncertainty denotes a noisy and uncertain 

estimate of the model's output. In these cases, the model shows a lack of confidence in its forecasts, which is 

indicative of significant uncertainty or variation in the evaluated results. 

The implementation of a Bayesian Neural Network (BNN) involves the utilization of probabilistic (e.g., 

DenseVariational) layers to define the posterior and prior distributions over the weights of the model, hence 

enabling the estimation of uncertainty (Chang et al., 2021). This methodology enables the neural network to 

effectively include the inherent uncertainty present in both the data and the model, resulting in the generation 

of a probability distribution including a range of potential outputs, as opposed to a singular deterministic 

prediction. By utilizing probabilistic layers, the neural network is capable of preserving and enhancing distribution 

over every weight. This approach allows for a more comprehensive representation that encompasses the 

uncertainty and variability in both the model parameters and predictions. Consequently, it leads to the 

development of a more resilient and informative model, particularly in situations where there is uncertainty or 

limited data availability. 

 

 

Figure 23: Predicted vs. Actual Values with 95% Confidence Interval. 
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Figure 24: Predicted vs. Actual Values with Confidence as Colour. 

 

Figures 23 and 24 provide informative visual representations of the prediction capabilities demonstrated by the 

Bayesian Neural Network (BNN). Figure 23 illustrates a comparison of predicted and actual values, comprised by 

a 95% confidence interval. This visual representation successfully communicates the spectrum of possible results 

and the underlying uncertainty in the model's predictions. The color-coded representation of the projected vs 

actual values in Figure 24 enables users to distinguish regions of greater or lesser certainty in the model's 

predictions, as determined by the level of confidence in the predictions. Together, these images offer a 

comprehensive picture of prediction quality and highlight areas where further investigation may be necessary 

due to increased levels of uncertainty. 

The implementation of Automatic Relevance Detection (ARD) in a Bayesian Neural Network (BNN) involves the 

utilization of probabilistic layers to establish the posterior and prior distributions relevant to the weights of the 

network (Burden et al., 2000). Automated relevance determination (ARD) aids in the assessment of the 

importance of individual input features in relation to the predictive outcomes of the model. By leveraging the 

probabilistic layers, which maintain and optimize a distribution over each weight, the Bayesian Neural Network 

(BNN) can estimate the impact of the features. This approach enables the Bayesian Neural Network (BNN) to 

prioritize essential features, potentially simplifying the model and improving its interpretability, while 

maintaining the performance. 
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Figure 25: Automatic Relevance Detection (ARD) 

 

Figure 25 illustrated the integration of Automatic Relevance Detection (ARD) within the Bayesian Neural Network 

(BNN). ARD enables the model to evaluate the significance of individual input features in relation to their impact 

on predictive outcomes. The BNN uses probabilistic layers to figure out which features are important. It then 

finds essential features that make the model easier to understand and may let it be simplified without losing its 

ability to make accurate predictions. 
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3.4. Model performance evaluation 

Performance evaluation is needed for two roles: to tune the hyperparameters of the model to the best possible 

performance, and to evaluate how useful the model would be in the future, when it faces new situations and 

new data. Therefore, the project's aim and utility values of correct and incorrect predictions are involved in 

performance evaluation. 

 

3.4.1 K-fold cross-validation (CV) 

K-fold Cross-validation (CV) is a widely used approach in machine learning and statistical modelling for evaluating 

the performance of predictive models. It provides a reliable estimate of the model's ability to generalize to 

unseen data by repeatedly splitting the dataset into training and validation subsets (Arlot & Celisse, 2010). K-fold 

CV incorporates the partitioning data into K equally sized subsets, or "folds." In each iteration, K-1 folds are used 

for training the model while the remaining fold is used for validation. This process is repeated K times, with each 

fold used once as the validation set. The final performance metric is estimated by averaging the performance 

metrics of each iteration, which helps to reduce the risk of overfitting and improve the model's reliability (Kohav 

RF I, 1995).  

The choice of parameter K is a vital factor that impacts the model's performance and the complexity of the 

process. The value of K is set to 5 or 10, as these values have been found to provide a good balance between bias 

and variance (James et al., 2013). However, the suitable value of K is somewhat vague; mainly small K’s are for 

small datasets and large K’s for a large dataset. The ultimate limitation of K is a practical computation time. 

 

3.4.2 Stratified cross-validation (SCV) 

Stratified cross-validation (SCV) is a method used in machine learning and statistical analysis to measure how 

well a model works and how well it can predict. This method makes sure that the proportion of each class in the 

dataset is kept when the data is split into training and testing sets, which makes it less likely that the results will 

be biased (Kohavi, 1995). SCV improves the traditional k-fold cross-validation method, in which the dataset is 

randomly split into k subsets of equal size. In this method, one-fold is used for testing, while the remaining K-1 

folds are used for training the model. It ensures that each fold has the same class distribution as the original 

dataset. This is particularly important for datasets that are not balanced because it helps avoid overfitting and 

keeps the model from favouring the majority class (Japkowicz & Shah, 2011). By maintaining the class distribution 

in each fold, SCV ensures that the model learns to generalize well across all classes. 

 

3.4.3 Leave-one-out cross-validation (LOOCV) 

In machine learning and statistics, the Leave-One-Out Cross-Validation (LOOCV) approach is a special kind of 
cross-validation method that is used to assess the effectiveness of prediction models. It is a special case of K-fold 
cross-validation, where K is the number of samples in the dataset. Each observation in LOOCV is evaluated exactly 
once as the validation set, while the remaining datasets are used to train the model (Lachenbruch & Mickey, 
1968). LOOCV works by iteratively going through each sample in the dataset, training the model on all samples 
except the one being validated, and testing the model on the single validation sample. Each time through the 
loop, the performance metrics, such as accuracy, mean squared error, and others, are calculated. One can 
estimate the final performance by averaging the performance across all iterations. The main benefit of LOOCV is 
that it has low bias, since each iteration's training set contains all samples and is a good representation of the 
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original dataset. However, it can have a high variance as the trained models in each iteration are similar, leading 
to correlated performance estimates. LOOCV can be computationally expensive because it requires training the 
model N times, especially for large datasets (where N is the number of samples). 
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4. Limitations 

Several functionalities and tools were not included yet in the initial release of the additional algorithms to be 

implemented into EIS Toolkit. For example, spatial cross-validation (SCV) was left out. SCV indicates the reliability 

and accuracy of the model over larger distances from the positive samples. It can indicate also possible general 

applicability in a continent wise scale.  

Generative models and probabilistic models covering several environmental features and having an integrated 

multi-scale functionality are missing. These would require much more research effort, and since the main 

deliverable is a working EIS system, these were excluded. 

An interactive functionality of dividing the shown area by the similarity (using the feature set used in the 

prediction, and a user-chosen norm) was left out. This kind of tool is easy to implement later to the system, 

though, and the main issue would be to adapt the usability to typical work cycles of geology experts. 

The entire cloud-computing aspect was limited from the project. That means exclusion of a number of big data 

ML methods and technologies, especially true team co-operation and the large-scale DL. Implementing a single 

workstation application gives a chance to approach complexities of cloud computing in the future, this especially 

because data structure definitions, UI workflow design and IR aspect may dominate in the mineral prospectivity 

mapping field over the technological providence.   

In the future, it is possible to include some of the above listed features to the current system or expand the 

system to the cloud servers, given a suitable funding situation and practical use-cases occur.  The most notable 

of the future inclusions would be the spatial cross-validation, which has been given a special introduction in 

chapter 2.3. 

The final release of the additional algorithms to be implemented into EIS Toolkit with be submitted in April 2024 

with the Deliverable D3.6. 
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5. Conclusion 

The presented functionalities provide an overview of how to use the developed additional ML algorithms 

potentially for mineral prospectivity analysis and different results visualizations. Some of the functionalities may 

be useful, and some less so, but this remains to be judged by the practical use of the system. There would have 

been many other possibilities, but the focus is on these functions. It is important that the functionalities 

described in this document are accessible and integrated within EIS Toolkit and will be made available in the EIS 

QGIS Plugin in April 2024.  

Future development may use the integration interfaces and the GIS framework to introduce better and more 

useful services later. The next possible steps would be weighting in data availability and data costs within feature 

selection. One should also evaluate the usefulness of global or near global data sources, and possible benefits of 

adding open data features and cloud computing level to the system. Also, one needs to develop a wider selection 

of models that can handle complex geolocation data and improve the accuracy of mineral prospectivity mapping, 

especially considering the underrepresentation of positive samples and challenges of uncertainty estimation 

created by this sparsity. 

Each ML method added has a specific demand on implementation. This means it is not a routine task to define 

the required work effort, but some margin has to be added, this especially when a data amount increases and 

need for several optimizations (better feature selection, data compression) arise.  
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