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Disclaimer 
The content of this report reflects only the author’s view. The European Commission is not responsible for any 
use that may be made of the information it contains. 
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Abbreviations and Acronyms 

Acronym Description

WP Work Package 

RF Random Forest 

CV Cross-validation 

GIS Geographic Information System 

EIS Exploration Information System 

PCA Principal component analysis 

PCP Parallel coordinate plot 

CNN Convolutional neural networks 

MPM Mineral prospectivity mapping 

MLP Multilayer perceptron 

SCV Stratified cross-validation 

LOOCV Leave one out cross-validation 

SMOTE Synthetic over-sampling techniques 

 

Summary 
Mineral prospectivity mapping is a vital tool for the exploration and mining industry. It enables geologists and 
mining companies to identify areas with the highest potential for new mineral deposits, which can guide their 
future exploration programs and investment decisions. This process involves collecting, compiling, and analysing 
various geochemical, geological, and geophysical data. Once the data is collected, different techniques, such as 
data pre-processing, data visualization, feature selection, and data augmentation, are used to identify patterns 
and relationships in data. Prospectivity modelling is then used to create a model that predicts the likelihood of 
finding new mineral deposits based on the collected data. The model's performance is evaluated using different 
cross-validation techniques. 

 

Keywords 
Mineral prospectivity mapping, Machine Learning, Data visualization, Multilayer perceptron, Cross-validation 
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1. Introduction 
1.1. Objective of Task 3.2 
The main goal of Task 3.2 is to develop efficient machine learning methods for mineral prospectivity problem. 
For this purpose, we divided this task into the following sub-tasks: 

 Data pre-processing: Methods for spatial feature extraction from spatial data. We try to find self-
explanatory features as well as more abstract feature spaces.

 Data visualization algorithms: Several clustering methods will be tested to produce visualizations of 
mineral prospectivity and a limited set of auxiliary properties, which are of interest to geologists. 

 Prospectivity modelling: Several methods are tested starting from simple and robust ones like random 
forest and ending to deep learning methods. Special interest are validation methods considering the 
spatial autocorrelation of data. The order of experimentation is such that it guarantees a satisfying 
performance within the given resources. 

 Algorithms for estimating the uncertainty of prediction: Computationally simple methods e.g., k-nearest 
neighbours are used to estimate the uncertainty of the models. Advanced data variation approaches 
will be used, too.

 Optimization of training data: Such methods are sought after, which determine new field sample site 
candidates, which improve the uncertainty or spatial generalization capability of the prospectivity 
models.

1.2. State of the Art 
Predictive modelling of mineral prospectivity mapping (MPM) using geographical information systems helps to 
create maps of mineral potential by incorporating geospatial data from multiple sources. The workflow of GIS-
based MPM comprises the spatial correlations between geological, geochemical, and geophysical with known 
mineral deposits. MPM is a data-driven procedure, which highly depends on geoscientific data and statistical 
correlations between geospatial patterns and known annotated mineral points. 

There have been many reviews of work on mineral identification for specific dataset types. Since 1980, logistic 
regression (Chung and Agterberg, 1980a, b) and WofE (Agterberg, 1989a, b) have been used in MPM. Bonham-
Carter (1994) explained the working idea of these principles in his work. The WofE model introduced by 
Agterberg and Bonham-Carter (1990) into the field of mapping mineral prospectivity (Agterberg, 1989a, b; 
Agterberg and Bonham-Carter, 1990; Bonham-Carter, 1994), is popular among these techniques because it is 
simple to apply and interpret (Porwal and Carranza, 2015). WofE is a probabilistic model that uses conditional 
probability theory to figure out how geospatial patterns and known mineral deposits are related to each other 
in the spatial domain. Carranza and Hale investigated how fuzzy logic and logistic regression could be used to 
map gold mineralization potential in the Philippines' Baguio district (Carranza, E.J.M., and Hale, M. 2001). Their 
method demonstrated how fuzzy logic could increase the precision of MPM predictions by accounting for 
uncertainty in the input data. Based on the Dempster-Shafer theory, Evidential belief functions manage 
uncertainty and incorporate various evidence from geological, geophysical, and geochemical data in mineral 
prospectivity mapping (Carranza, 2008). 
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Machine learning is getting a lot of attention in mineral prospectivity mapping because it can handle large and 
complex datasets, improve the accuracy of predictions, and automate the process of finding out latest 
information (Carranza, 2011). Since 1990, simulating the human brain's learning process by adjusting weights 
between interconnected neurons, ANN has been applied in the field of MPM (Cracknell & Reading, 2014). In 
mineral exploration, ANNs have been shown to be able to model complex, nonlinear relationships between 
geological, geophysical, and geochemical variables (Singer & Kouda, 1996). However, ANNs have some problems, 
like the difficulty of estimating the optimal network parameter, the risk of overfitting, and the fact that the 
learned models are hard to understand (Cracknell & Reading, 2014). SVMs, a class of ML techniques, have been 
used for MPM due to their ability to manage high-dimensional data and their robustness towards overfitting (Zuo 
et al., 2017). The main objective of SVM is to find the optimal decision boundary (hyperplane) that can separate 
the positive (mineralized) and negative (non-mineralized) samples with the maximum margin (Granek, J. 2016). 
However, with large datasets, the kernel function and hyperparameters selected may impact the model's 
performance (Zuo et al., 2017). Random forest is a type of ensemble learning that can process high-dimensional 
data, resist overfitting, and give variable importance measures (Rodriguez-Galiano et al., 2015). RF combines 
numerous decision trees to create predictions, each of which was built using a different random subset of the 
training data and variables (Breiman, 2001). Another ensemble method, Gradient Boosting Machine (GBM), has 
demonstrated promise in MPM by successively integrating many weak learners (often decision trees), with each 
new learner rectifying the mistakes of the prior one (Oliveira et al., 2019). With better performance than other 
ML techniques, GBMs have been successfully used to map out the gold reserves in Brazil. 

Deep Learning is a state of art technique that has emerged as a promising approach in MPM due to its capability 
to model complex relationships between input features and target variables (Chen et al., 2020). CNNs have 
gained a lot of attention in MPM because they can handle spatial data like remote sensing and geophysical 
images well and learn hierarchical features on their own. The authors showed that CNNs are better than 
traditional machine learning methods at handling multi-scale spatial data and making accurate predictions. 
Autoencoders are a type of unsupervised DL technique used in MPM to find features and reduce the number of 
dimensions (Luo, 2020). Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU), a Recurrent Neural 
Network (RNN) type, has shown potential for MPM due to its ability to model ordinal dependencies in time-series 
data (Zhao, 2020) (Yin, 2022). 
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2. Software Documentation 
2.1. Data pre-processing 
The main task of pre-processing was to convert the multiple geophysical attribute GeoTiff raster layers into a csv 
table, where one row corresponds to the location of one pixel in the datasets and columns correspond to values 
of one geophysical attribute. This was only done for the visualizations and analysis that required it, otherwise 
the GeoTiffs would be used. Some additional columns are added, such as the coordinates of each pixel and 
whether a known ore deposit is located there. The raster sampling can be done easily with conventional GIS 
software, such as QGIS, or using rasterio and geopandas python packages. In this case, GIS software was used. In 
QGIS, the workflow is like the following:  

"Raster pixels to points"—the tool can be used to convert pixels of one raster layer to a points layer, with each 
pixel having the value of the raster layer in its attribute table. Other layers values can be added to this layer as 
new columns using the "sample raster values" tool. The "Rasterize (vector to raster)" tool can be used to create 
a raster with a value for known ore deposit locations and zero elsewhere. This can then be sampled the same 
way as all the other raster layers. Finally, the north and east coordinates (in the projection of the data) can be 
added as fields in the field calculator with the $x and $y commands, respectively. Then, the resulting vector point 
layer can be saved as a csv. 

 

2.2. Data visualization 

2.2.1  

Principal component analysis (PCA) is a statistical method that uses dimensionality reduction techniques, that 
may give the geologist or prospecting expert a unified view over data or parts of it. It is possible to detect clusters 
from this view, which the user then can try to explain, and direct further analysis steps accordingly.  

This unsupervised algorithm is often used in ML to find solid patterns while emphasizing the variation in the 
dataset. The fundamental concept behind PCA is to find dominant directions in the dataset that contain the 
highest variance. The orientation of the dominant plane is such that clustering structure is sometimes revealed 
(Abdi & Williams, 2010). The dominant plane is defined by so called principal components (1,2 or 3) of the data. 
Subsequent principal components account for a decreasing amount of capability to explain the variance in data 
(Jolliffe & Cadima, 2016). 

The PCA is a well-known and common method with many variants, and often used with multi-source 
geolocational data as a preliminary tool. There are formulations such as the iterative power method, the 
covariance matrix eigen decomposition, or singular value decomposition (SVD). The covariance matrix of the 
given data is calculated, and eigenvectors (principal components) and eigenvalues are found. The eigenvalues 
give the variance in each principal component, while eigenvectors show the direction of the new coordinate 
system (Wold, Esbensen, & Geladi, 1987). After the calculation of principal components, the calculated data is 
projected onto the new coordinate system for visualization, classification, or regression tasks (Van Der Maaten, 
Postma, & Van den Herik, 2009).  

There are many options for visualizing PCA. With geospatial raster data, one of the most effective ways is to set 
different principal components to red, green, and blue bands of a raster (Figure 1). This way areas of bedrock 
with comparable properties are highlighted with similar colours. Sometimes it might also be useful to assign 
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principal component 4, 5 or even 6 into one of the colour bands. However, this is only useful if these components 
have eigenvalues that are not much smaller than principal components 1, 2 and 3. 

Figure 1 shows ten different raster layers were used as starting data, each of them containing information about 
radioactivity, electrical properties, or magnetic and gravitational anomalies in the area. PCA was done for the 
layers, and the first principal component was assigned to red band, second principal component to green band 
and third component to blue band. The resulting raster is very colourful since principal components do not 
correlate with each other. Known ore deposits are shown with white rings. It is notable that all of them in the 
area are located at or close to similar hues of dark red and violet. 

 

 

Figure 1: Example of PCA visualization with geophysical data 
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2.2.2  

A parallel coordinate plot (PCP) is a well-known, powerful visualization tool for analysing and exploring high-
dimensional datasets in two-dimensional space. PCP is also known as parallel axes plot or parallel coordinates. 
PCP represents each row in the data table as a line or profile, with a point on the line representing each row's 
attribute. Alfred Inselberg first introduced PCP in the 1980s, and it has since become widely used in various fields 
of machine learning (Inselberg, A., 1985). In some cases, a cluster structure in data can be observed, especially 
when a certain value of a certain feature dominates a cluster. (Sansen, J., Richer, G., Jourde, T., Lalanne, F., Auber, 
D., & Bourqui, 2017).  

PCP is particularly good in our case because it gives the analyst a compact and straightforward way to explore the 
data. Secondly, it gives an intuitive overall view of the data (Inselberg, A., & Dimsdale, B., 1990, Figure 2). 

 

 

Figure 2: Example of parallel coordinate plot with geophysical data 
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In Figure 2, the value of known ore deposits is shown in red, while values from other places are shown in shades 
of gray with darker areas showing higher densities than lighter areas. 

 

2.2.3  

Heatmaps are a type of plot that visualizes the strength of relationships between numerical variables. Correlation 
plots can be used to understand which variables are related to each other and the strength of this relationship 
(Figure 3). 

 

Figure 3: Pairwise correlations between different geophysical variables 
 

The radioactivity measures are strongly correlated with each other in the test data, but otherwise the variables 
are mostly not strongly correlated. 

 

2.2.4  

A scatterplot is useful tool for understanding the pairwise relationship between different variables in a dataset. 
They are particularly effective when they are interactively combined with other data visualization tools. 

For this example, the PCA visualization introduced previously is used as a starting point. A subregion of the data 
with similar colours to the known ore deposits is also demarcated (Figure 4). 
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Figure 4: An example subregion (pink) that is similar colour to the known ore 
deposits (white rings) has been digitized, and its values from bands 1 and 2 have been 
plotted on figure 5 along with the values of all the data. The data is PCA from multiple 
geophysical data sources, where principal component (PC) 1 is assigned to red, PC 2 
to green and PC 3 to blue. 
 

Principal components 1 and 2 were chosen for the scatterplot (Figure 4). The subregion was plotted with a 
distinct colour than the rest of the data. Raster files often have millions of pixels, and it is thus important to show 
point density with colour in the densest parts of the scatterplot. 
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Figure 5: Scatterplot of principal components 1 (horizontal) & 2. (vertical). The 
colours indicate the sample density (white: dense, pink: sparse) 
 

The subregion shown in figure 4 is shown in pink. The red box shows the approximate value range of the 
subregion. All the other values are shown in shades of blue. Lighter regions correspond to higher density.  

Finally, the locations with values within the demarcated region in the scatterplot can be added back to the map 
(Figure 6). These are areas with similar geophysical features, and ore deposit locations since they are like known 
ore deposits. The areas of interest could be narrowed further by looking at different band combinations in the 
scatterplot. 
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Figure 6: Locations of pixels with values of principal components 1 and 2 in the 
value range demarcated in figure 5. 
 

2.2.5  

Permutation feature importance is a model-agnostic method for figuring out each feature's importance in a 
machine learning model. It does this by measuring how the model's performance changes when the values of a 
particular feature are changed randomly (Breiman, 2001). The basic idea is that if a feature is vital for making 
predictions, changing its value at random should significantly affect how well the model works. It is model 
agnostic, allowing it to be applied to any supervised learning model, and it does not rely on assumptions about 
the data distribution or the model's structure (Fisher et al., 2019). However, it can be computationally expensive, 
especially for high-dimensional datasets, because it requires evaluating the performance of the model more than 
once. Also, it might not give an accurate estimate of how important correlated features are since rearranging 
one feature might not significantly affect how well the model works if another correlated feature still gives similar 
information (Strobl et al., 2008). Despite these shortcomings, permutation feature importance is still a 
fashionable way to figure out how important a feature is in different situations. It helps researchers and 
practitioners understand their models, determine their meaning, and make their models work better by choosing 
crucial features. 
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2.2.6  

Weighting of class is a machine learning technique to address imbalanced datasets, where some classes have 
significantly fewer instances than others. Imbalanced datasets can lead to biased models that perform poorly on 
the underrepresented classes, as the learning algorithm tends to focus on the majority class to minimize the 
overall loss (He & Garcia, 2009). By assigning different weights to each class, the learning algorithm can be guided 
to pay more attention to underrepresented classes during training. Most of the time, larger weights are assigned 
to the minority classes, whereas lower weights are assigned to the majority classes. This way, misclassifying an 
instance from the minority class will significantly impact the loss function, encouraging the model to improve its 
predictions for the underrepresented classes. Many machine learning libraries, like Python's scikit-learn, have 
built-in features that automatically calculate class weights or let users set their own (Pedregosa et al., 2011). 
Adding class weights to the learning algorithm makes the model more likely to do better in the minority classes. 
This class weight makes the classifier more balanced and reliable. 

 

2.2.7  

Synthetic Minority Over-sampling Technique (SMOTE) is a popular technique used to address the class imbalance 
problem in machine learning datasets (Chawla et al., 2002). The issue of class imbalance occurs when certain 
classes have a significantly smaller number of instances than others, which results in biased models that 
underperform for the underrepresented classes. The problem of class imbalance occurs when some classes have 
much smaller datasets than others, resulting in biased models. SMOTE works by generating synthetic samples 
for the minority class, effectively balancing the class distribution, and improving the model's performance on the 
minority class. In this way, SMOTE generates synthetic instances, providing a more balanced dataset without 
duplicating any already existing instances. This allows the learning algorithm to capture the decision boundary 
between the classes better and achieve improved performance on the minority class. 

Despite its advantages, SMOTE also has some limitations. It can lead to overfitting, particularly when the 
minority-class instances are noisy or near the decision boundary. Moreover, SMOTE does not consider the 
majority class distribution, which may result in synthetic instances being generated in regions where majority 
class instances dominate. To address these issues, several SMOTE variants have been proposed, such as 
Borderline-SMOTE (Han et al., 2005) and Adaptive Synthetic (ADASYN) sampling (He et al., 2008), which focus on 
generating synthetic instances in more challenging regions of the feature space. 

 

2.3. Prospectivity modeling 

2.3.1  

Random forest (RF) algorithm is a decision tree-based method, which works by testing multi-branched decision 
trees for the input data set and selecting the decision tree that results in the best prediction. Each node in the 
decision tree represents testing an input feature, and each branch end represents the result of the test (Breiman 
2001). The decision trees allow modelling complex interactions in the feature space formed by the input data, 
and thus they often work well in high-dimensional feature space. Individual decision trees are often prone to 
overfitting, which can be kept under control by using multiple decision trees (Stephens 2017). RF typically 
requires enough observations in the training data. RF is a common method in remote sensing-based applications 
where a high number of input features are used. 
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2.3.2  

Multilayer perceptron (MLP) (Bishop 1995) is a simple feedforward neural network that is composed of multiple 
layers of perceptron. MLP typically consists of at least three layers of nodes: an input layer, a hidden layer, and 
an output layer. In the prediction task, MLP neural network typically trains the neural network to minimize the 
difference between output and objective by adjusting the weights of the inputs within the layers. MLP, or neural 
networks in general, are usually trained using some form gradient descent-based backpropagation algorithms 
which calculate the network’s current performance with the data and then updates the network weights layer 
by layer by moving backwards (i.e., backpropagating) through the network. Because the number of weights in a 
neural network are usually exceptionally large, it becomes easily computationally infeasible to perform the 
iterative updates of the network using the full data available. In these cases, especially in deep neural network 
context, a stochastic versions of backpropagation algorithms are used which take a random smaller sample of 
the training data and perform the weight updates using this sample. The training of MLP is easy task, but in 
remote sensing-based applications MLP has been superseded by other machine learning methods such as genetic 
algorithms and support vector machines due to their better empirical performance in empirical prediction and 
classification tasks (see e.g., Frias-Martinez et al., 2005, Pohjankukka et al., 2018).  

2.3.3  

In the last few years, Deep Learning (DL) has made huge progress in remote sensing (Lei et al. 2019). The most 
common DL applications in remote sensing include image fusion, scene classification, object detection, land-
cover classification, and semantic segmentation. However, for remote sensing, several challenges from difficult 
data acquisition and annotation have not been fully solved yet. Convolutional neural network (CNN) is a most 
extensively used DL models that can process data in the form of multiple layers (Yao et al. 2019). For this reason, 
CNN is applicable for processing multi-band remote sensing data. A CNN model consists of different layers of 
convolution, Rectified Linear Unit (RELU), pooling and fully connected (Dhillon et al. 2020). The Convolutional 
layer learns feature in an input data. The RELU layer introduces non-linearity through activation function. The 
pooling layer reduces dimensionality and preserves spatial invariance. All these layers are responsible for feature 
extraction and then the fully connected layer perform classification. 

 

2.4. Model performance evaluation 
Performance evaluation is needed for two roles: to tune the hyperparameters of the model to the best possible 
performance, and to evaluate how useful the model would be in the future, when it faces new situations and 
new data. Therefore, the project's aim and utility values of correct and incorrect predictions are involved in 
performance evaluation. 

 

2.4.1  

K-fold Cross-validation (CV) is a widely used approach in machine learning and statistical modelling for evaluating 
the performance of predictive models. It provides a reliable estimate of the model's ability to generalize to 
unseen data by repeatedly splitting the dataset into training and validation subsets (Arlot & Celisse, 2010). K-fold 
CV incorporates the partitioning data into K equally sized subsets, or "folds." In each iteration, K-1 folds are used 
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for training the model while the remaining fold is used for validation. This process is repeated K times, with each 
fold used once as the validation set. The final performance metric is estimated by averaging the performance 
metrics of each iteration, which helps to reduce the risk of overfitting and improve the model's reliability (Kohav 
RF I, 1995).  

The choice of parameter K is a vital factor that impacts the model's performance and the complexity of the 
process. The value of K is set to 5 or 10, as these values have been found to provide a good balance between bias 
and variance (James et al., 2013). However, the suitable value of K is somewhat vague; mainly small K’s are for 
small datasets and large K’s for a large dataset. The ultimate limitation of K is a practical computation time. 

 

2.4.2  

Stratified cross-validation (SCV) is a method used in machine learning and statistical analysis to measure how 
well a model works and how well it can predict. This method makes sure that the proportion of each class in the 
dataset is kept when the data is split into training and testing sets, which makes it less likely that the results will 
be biased (Kohavi, 1995). SCV improves the traditional k-fold cross-validation method, in which the dataset is 
randomly split into k subsets of equal size. In this method, one-fold is used for testing, while the remaining K-1 
folds are used for training the model. It ensures that each fold has the same class distribution as the original 
dataset. This is particularly important for datasets that are not balanced because it helps avoid overfitting and 
keeps the model from favouring the majority class (Japkowicz & Shah, 2011). By maintaining the class distribution 
in each fold, SCV ensures that the model learns to generalize well across all classes. 

 

2.4.3  

In machine learning and statistics, the Leave-One-Out Cross-Validation (LOOCV) approach is a special kind of 
cross-validation method that is used to assess the effectiveness of prediction models. It is a special case of K-fold 
cross-validation, where K is the number of samples in the dataset. Each observation in LOOCV is evaluated exactly 
once as the validation set, while the remaining datasets are used to train the model (Lachenbruch & Mickey, 
1968). LOOCV works by iteratively going through each sample in the dataset, training the model on all samples 
except the one being validated, and testing the model on the single validation sample. Each time through the 
loop, the performance metrics, such as accuracy, mean squared error, and others, are calculated. One can 
estimate the final performance by averaging the performance across all iterations. The main benefit of LOOCV is 
that it has low bias, since each iteration's training set contains all samples and is a good representation of the 
original dataset. However, it can have a high variance as the trained models in each iteration are similar, leading 
to correlated performance estimates. LOOCV can be computationally expensive because it requires training the 
model N times, especially for large datasets (where N is the number of samples). 
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3. Limitations 
Several interesting functionalities were left out. For example, spatial cross-validation (SCV) was left out. SCV 
indicates the reliability and accuracy of the model over larger distances from the positive samples. It can indicate 
also possible general applicability in a continent wise scale.  

Generative models and probabilistic models covering several environmental features and having an integrated 
multi-scale functionality are missing. These would require much more research effort, and since the main 
deliverable is a working EIS system, these were excluded.  

In the future, it is possible to include some of these to the current system, given a suitable funding situation and 
practical use-case occurs. 
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4. Conclusion 
The presented functionalities serve as examples of potential that ML analysis and different visualizations can 
provide to prospecting. Some of the functionalities may be useful, and some less so, but this remains to be judged 
by the practical use of the system. There would have been many other possibilities, but the focus is on these 
functions. It is important that the functionalities described in this document are accessible and integrated within 
EIS and QGIS.  

Future development may use the integration interfaces and the GIS framework to introduce better and more 
useful services later. The next possible steps would be weighting in data availability and data costs within feature 
selection. Also, one needs to develop a wider selection of models that can handle complex geolocation data and 
improve the accuracy of mineral prospectivity mapping, especially considering the underrepresentation of 
positive samples and challenges of uncertainty estimation created by this sparsity. 
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